
FFT algorithm optimization using Stream SIMD
Extension instruction set

Pawel Dawidowski

Wroclaw Uniwersity of technology

This paper explain how to perform Cooley and Tukey fast

Fourier transform for sequence length being power of 2 using
modern Stream SIMD1 Extension known as SSE. Basis of FFT
algorithm will be shown pointing on which parts can be
significantly speed up using SSE focusing on programming side
rather than FFT algorithm itself. Also basic SSE instruction will
be introduced.

I. FFT

The idea of calculating digital convolution is to approximate
integral in (1) to (2) on finite sum over N samples of signal:

 () j tf t e dtω
∞

−

−∞

⋅∫ (1)

21

0

0,1,..., 1
jN kn

N
k n

n

X x e k N
π−−

=

= ⋅ = −∑ (2)

Point is this raw calculation need to perform N
multiplication over k which takes also N values so overall
complexity of algorithm is N2. Even for relatively small
numbers of samples the amount of calculation can be pretty
high. Assuming N is power of 2 Cooley and Tukey has split
odd and even elements of sum (2):

2 j

kn
kn NW e

π−

= (3)

1 1

N N
kn kn

k n n
n even n odd

X x W x W
− −

= ⋅ + ⋅∑ ∑ (4)

Each of those summations is recognized as being an N/2
point DFT of the respective sequence because:

 2

22
22 N

jj

NW e e

ππ −−

= = (5)
So if we calculate DFT for odd and even indexed k in (2) we

can calculate overall DFT combining (4) together:
 () () ()k

even oddX k X k W X k= + (6)

Using this approach we will need only N⋅ log2N complex
multiplication to perform, because we need exactly log2N of 2
times smaller DFT to calculate.
For example if N = 1024:

2

2

: = N 1048576

: = Nlog 10240

DFT multiplication need

FFT multiplication need N

=
=

 (7)

Because of this great time reduction FFT algorithm is widely
used in many application which need Fourier transform.

1 SIMD is abbreviation from Single Instruction Multiple Data. In the term of
SSE instruction 4 single precision floating point or 2 double precision floating
point operation are performed in parallel on one processor core.

II. STREAM SIMD EXTENSION

SSE is a mathematical coprocessor which operates on
floating point numbers. It has 8 additional and independed 128-
bit registers for calculation which are 4x32-bit single precision
floating point value or 2x64 double precision one. The main
advantage of using it is performing 4 or 2 operation in parallel,
so depending on precision we need it can cut the algorithm
execution time 4 or 2 times.

Basic SSE instruction set is shown in table 1, while full
instruction set with descriptions and timing is available at Intel
web site (Ref. [2]). All instruction which end –PS is doing 4
parallel operations at simultaneously while –SS mean only one
operation.

TABLE 1
SSE BASIC INSTRUCTION SET

Instruction Operation
MOVSS,
MOVAPS, MOVUPS
MOVSD,
MOVAPD,MOVUPD

Copy operation:
from memory. to register
from register to memory
from register to register

ADDPS, ADDSS,
ADDPD, ADDSD

Addition

SUBPS, SUBSS,
SUBPD, SUBSD

Subtraction

MULPS, MULSS,
MULPD, MULSD

Multiplication

DIVPS, DIVSS,
DIVPD, DIVSD

Division

SHUFPS In register data shuffle

There are few things which can be optimized using those

instructions. First thing is to rewrite complex multiplication to
take advantage of parallel operation. Second is to notice, that in
first step Wkn = -1 so no complex operation is actually
necessary. In second step we have at most 4 Wkn values 1, j, -
1 ,-j which can threaten as a special case. Since Wkn are kth root
of one we can calculate it inside of SSE register for next steps.
Only value need to load is to load complex number for k = 1 in
(3). Next values for next k can be calculated by recursion (8):
 1 1kn knW W W+ = ⋅ (8)

III. COMPLEX MULTIPLICATION ON SSE

To calculate complex multiplication using SSE we can
assume at the beginning that we want to perform 2
multiplications at once. With 4 floating point register each pair
of 2 values can be complex real and imaginary part. For start
assume we want to calculate:

A A A

B B B

C A B

Z a jb

Z a jb

Z Z Z

= +

= +
= ⋅

 (9)

From algebra we know:
 ()C A B A B A B A BZ a a b b j a b b a= ⋅ − ⋅ + ⋅ + ⋅ (10)

We need 4 multiplications and 2 algebraic additions to
calculate complex multiplication.
Now let’s try to do this using SSE. Since we have 4 floating
value in one register we can perform 2 multiplications in
parallel. Let’s assume we have loaded our complex numbers
into XMM0 and XMM1 registers and XMM3 and XMM4 has
values to change signs. Each of them contains 2 complex
numbers as in the Table 2:

TABLE 2
INITIAL VALUES IN REGISTER

Register name reg[0] reg[1] reg[2] reg[3]
XMM0 aA1 bA1 aA2 bA2
XMM1 aB1 bB1 aB2 bB2
XMM3 1.0 -1.0 1.0 -1.0
XMM4 -1.0 1.0 -1.0 1.0

The program which realizes complex multiplication is:

1. MOVAPS %%XMM0,%%XMM2
2. SHUFPS $0xA0, %%XMM2,%%XMM2
3. MULPS %%XMM1,%%XMM2
4. SHUFPS $0xF5, %%XMM0,%%XMM0
5. MULPS %%XMM3,%%XMM0
6. MULPS %%XMM1,%%XMM0
7. SHUFPS $0xB1 %%XMM0,%%XMM0
8. ADDPS %%XMM2,%%XMM0

Table 3. shows how register has changed as a result of
operation:

TABLE 3
REGISTER VALUES AFTER OPERATION

Line register reg[0] reg[1] reg[2] reg[3]
1. XMM2 aA1 bA1 aA2 bA2
2. XMM2 aA1 aA1 aA2 aA2
3. XMM2 aA1 aB1 aA1 bB1 aA2 aB2 aA2 bB2
4. XMM0 bA1 bA1 bA2 bA2
5. XMM0 bA1 -bA1 bA2 -bA2
6. XMM0 bA1 aB1 -bA1 bB1 bA2 aB2 -bA2 bB2
7. XMM0 -bA1 bB1 bA1 aB1 -bA2 bB2 bA2 aB2

8. XMM0 aA1 aB1 -
bA1 bB1

aA1 bB1 +
bA1 aB1

aA2 aB2 -
bA2 bB2

aA2 bB2 +
bA2 aB2

As we can see we need only 3 parallel multiplications and one
parallel addition to calculate 2 complex multiplications at once.
It means we need only 1.5 multiplications not 4 and only 0.5
additions not 2 per one complex multiplication. So
optimization has reduced floating point operation from 6 to 2.
That’s 3 times faster than without use SSE. All copy and
shuffle operation are only on internal registers which is done
much faster than copying values from/to memory.

IV. MEMORY OPERATION FROM AND TO SSE REGISTERS

There are two main instructions to load from memory into
XMM register and to store XMM register into memory:
MOVUPS and MOVAPS. First one work as a normal MOV
operation but it will copy 4x32bit floating point number into
XMM register. MOVAPS is faster but with one constraint: all
memory addresses has to be 16 bytes aligned, it means four
least significant bits in address has to be equal zero. The speed
difference in practical application is about 20-30% with
MOVAPS in comparison to MOVUPS. Luckily for FFT
calculation every step will be 16 bytes aligned since overall
data length is power of 2 so only thing to do is enable 16 bytes
align in compilation options.

V. OPTIMIZING 1ST
 AND 2ND

 FFT STEP

For 1st step W = -1 so there is no need to perform any
complex calculation. For second step W = 1, j ,-1, -j. For those
special cases we can write even shorter program. Only 3th and
next steps will need full complex multiplication.

Multiplication by j is only shuffling real and imaginary part
and change the sign properly as shown in (11) so it can be
realized on 2 SSE instructions for 2 complex numbers in
parallel.
 ()Z j a jb j b ja⋅ = + = − + (11)

The program which realize complex multiplication by j
using initial values as in Table 2 except XMM1 and XMM4 are
skipped:

1. SHUFPS $0xB1, %%XMM0,%%XMM0
2. MULPS %%XMM4,%%XMM0

The point is that even if we want to swap real and imaginary
part it could result in multiple memory read/write operation.
Here 2 complex numbers are read from and write to memory
exactly once so overall floating point operation number is 0.5
multiplications per one complex number.

VI. SUMMARY

Well optimized FFT algorithm can calculate Fourier
transform online, even for quite large samples number, while it
would be impossible to use raw DFT algorithm to calculate it
even on modern processors. Using SSE cuts computation time
even more by taking advantage of parallel calculation and
coprocessor designed especially for floating point operation.
All instructions presented in this paper are available in C++
either by inline assembly code or by intrinsic functions fully
described on Microsoft web page (Ref. [3]).

VII. REFERENCES

[1] Leland B. Jackson “Digital Filters and Signal Processing ”, 3th ed.
University of Rhode Island. Kluwer Academic Publishers Boston
Dordrecht London

[2] http://www.intel80386.com/simd/mmx2-doc.html
[3] http://msdn.microsoft.com/en-us/library/t467de55(VS.71).aspx

