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This paper explain how to perform Cooley and Tukey fast 

Fourier transform for sequence length being power of 2 using 
modern Stream SIMD1 Extension known as SSE. Basis of FFT 
algorithm will be shown pointing on which parts can be 
significantly speed up using SSE focusing on programming side 
rather than FFT algorithm itself. Also basic SSE instruction will 
be introduced. 

I. FFT 

The idea of calculating digital convolution is to approximate 
integral in (1) to (2) on finite sum over N samples of signal: 
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Point is this raw calculation need to perform N 
multiplication over k which takes also N values so overall 
complexity of algorithm is N2. Even for relatively small 
numbers of samples the amount of calculation can be pretty 
high. Assuming N is power of 2 Cooley and Tukey has split 
odd and even elements of sum (2): 
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Each of those summations is recognized as being an N/2 
point DFT of the respective sequence because: 
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So if we calculate DFT for odd and even indexed k in (2) we 

can calculate overall DFT combining (4) together: 
 ( ) ( ) ( )k
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Using this approach we will need only N⋅ log2N complex 
multiplication to perform, because we need exactly log2N of 2 
times smaller DFT to calculate. 
For example if N = 1024: 
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Because of this great time reduction FFT algorithm is widely 
used in many application which need Fourier transform.  
 

                                                           
1 SIMD is abbreviation from Single Instruction Multiple Data. In the term of 
SSE instruction 4 single precision floating point or 2 double precision floating 
point operation are performed in parallel on one processor core. 

 

II.  STREAM SIMD EXTENSION 

SSE is a mathematical coprocessor which operates on 
floating point numbers. It has 8 additional and independed 128-
bit registers for calculation which are 4x32-bit single precision 
floating point value or 2x64 double precision one. The main 
advantage of using it is performing 4 or 2 operation in parallel, 
so depending on precision we need it can cut the algorithm 
execution time 4 or 2 times. 

Basic SSE instruction set is shown in table 1, while full 
instruction set with descriptions and timing is available at Intel 
web site (Ref. [2]). All instruction which end –PS is doing 4 
parallel operations at simultaneously while –SS mean only one 
operation.  

TABLE 1 
SSE BASIC INSTRUCTION SET 

Instruction Operation 
MOVSS, 
MOVAPS, MOVUPS 
MOVSD, 
MOVAPD,MOVUPD 

Copy operation: 
from memory. to register 
from register to memory 
from register to register 

ADDPS, ADDSS, 
ADDPD, ADDSD 

Addition 

SUBPS, SUBSS, 
SUBPD, SUBSD 

Subtraction 

MULPS, MULSS, 
MULPD, MULSD 

Multiplication 

DIVPS, DIVSS, 
DIVPD, DIVSD 

Division 

SHUFPS In register data shuffle  

 
There are few things which can be optimized using those 

instructions. First thing is to rewrite complex multiplication to 
take advantage of parallel operation. Second is to notice, that in 
first step Wkn = -1 so no complex operation is actually 
necessary. In second step we have at most 4 Wkn values 1, j, -
1 ,-j which can threaten as a special case. Since Wkn are kth root 
of one we can calculate it inside of SSE register for next steps. 
Only value need to load is to load complex number for k = 1 in 
(3). Next values for next k can be calculated by recursion (8): 
 1 1kn knW W W+ = ⋅  (8) 

III.  COMPLEX MULTIPLICATION ON SSE 

To calculate complex multiplication using SSE we can 
assume at the beginning that we want to perform 2 
multiplications at once. With 4 floating point register each pair 
of 2 values can be complex real and imaginary part. For start 
assume we want to calculate: 
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From algebra we know: 
 ( )C A B A B A B A BZ a a b b j a b b a= ⋅ − ⋅ + ⋅ + ⋅  (10) 

We need 4 multiplications and 2 algebraic additions to 
calculate complex multiplication. 
Now let’s try to do this using SSE. Since we have 4 floating 
value in one register we can perform 2 multiplications in 
parallel. Let’s assume we have loaded our complex numbers 
into XMM0 and XMM1 registers and XMM3 and XMM4 has 
values to change signs. Each of them contains 2 complex 
numbers as in the Table 2: 

TABLE 2 
INITIAL VALUES IN REGISTER 

Register name reg[0] reg[1] reg[2] reg[3] 
XMM0 aA1 bA1 aA2 bA2 
XMM1 aB1 bB1 aB2 bB2 
XMM3 1.0 -1.0 1.0 -1.0 
XMM4 -1.0 1.0 -1.0 1.0 

 
The program which realizes complex multiplication is: 
 
1. MOVAPS   %%XMM0,%%XMM2 
2. SHUFPS  $0xA0, %%XMM2,%%XMM2  
3. MULPS   %%XMM1,%%XMM2 
4. SHUFPS  $0xF5, %%XMM0,%%XMM0 
5. MULPS   %%XMM3,%%XMM0 
6. MULPS   %%XMM1,%%XMM0 
7. SHUFPS  $0xB1 %%XMM0,%%XMM0 
8. ADDPS   %%XMM2,%%XMM0 
 
Table 3. shows how register has changed as a result of 
operation: 

TABLE 3 
REGISTER VALUES AFTER OPERATION 

Line register reg[0] reg[1] reg[2] reg[3] 
1. XMM2 aA1 bA1 aA2 bA2 
2. XMM2 aA1 aA1 aA2 aA2 
3. XMM2 aA1 aB1 aA1 bB1 aA2 aB2 aA2 bB2 
4. XMM0 bA1 bA1 bA2 bA2 
5. XMM0 bA1 -bA1 bA2 -bA2 
6. XMM0 bA1 aB1 -bA1 bB1 bA2 aB2 -bA2 bB2 
7. XMM0 -bA1 bB1 bA1 aB1 -bA2 bB2 bA2 aB2 

8. XMM0 aA1 aB1 - 
bA1 bB1 

aA1 bB1  + 
bA1 aB1 

aA2 aB2 - 
bA2 bB2 

aA2 bB2  + 
bA2 aB2 

 
As we can see we need only 3 parallel multiplications and one 
parallel addition to calculate 2 complex multiplications at once. 
It means we need only 1.5 multiplications not 4 and only 0.5 
additions not 2 per one complex multiplication. So 
optimization has reduced floating point operation from 6 to 2. 
That’s 3 times faster than without use SSE. All copy and 
shuffle operation are only on internal registers which is done 
much faster than copying values from/to memory.  

IV.  MEMORY OPERATION FROM AND TO SSE REGISTERS  

There are two main instructions to load from memory into 
XMM register and to store XMM register into memory: 
MOVUPS and MOVAPS. First one work as a normal MOV 
operation but it will copy 4x32bit floating point number into 
XMM register. MOVAPS is faster but with one constraint: all 
memory addresses has to be 16 bytes aligned, it means four 
least significant bits in address has to be equal zero. The speed 
difference in practical application is about 20-30% with 
MOVAPS in comparison to MOVUPS. Luckily for FFT 
calculation every step will be 16 bytes aligned since overall 
data length is power of 2 so only thing to do is enable 16 bytes 
align in compilation options. 

V. OPTIMIZING 1ST
 AND 2ND

 FFT STEP   

For 1st step W = -1 so there is no need to perform any 
complex calculation. For second step W = 1, j ,-1, -j. For those 
special cases we can write even shorter program. Only 3th and 
next steps will need full complex multiplication.  

Multiplication by j is only shuffling real and imaginary part 
and change the sign properly as shown in (11) so it can be 
realized on 2 SSE instructions for 2 complex numbers in 
parallel. 
 ( )Z j a jb j b ja⋅ = + = − +  (11) 

The program which realize complex multiplication by j 
using initial values as in Table 2 except XMM1 and XMM4 are 
skipped: 
 
1. SHUFPS  $0xB1, %%XMM0,%%XMM0  
2. MULPS   %%XMM4,%%XMM0 
 

The point is that even if we want to swap real and imaginary 
part it could result in multiple memory read/write operation. 
Here 2 complex numbers are read from and write to memory 
exactly once so overall floating point operation number is 0.5 
multiplications per one complex number. 

VI.  SUMMARY   

Well optimized FFT algorithm can calculate Fourier 
transform online, even for quite large samples number, while it 
would be impossible to use raw DFT algorithm to calculate it 
even on modern processors. Using SSE cuts computation time 
even more by taking advantage of parallel calculation and 
coprocessor designed especially for floating point operation. 
All instructions presented in this paper are available in C++ 
either by inline assembly code or by intrinsic functions fully 
described on Microsoft web page (Ref. [3]). 
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