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Abstract— Heffron-Philips model has had great popularity to 
simulate mono or multi machine power systems. Since the stability of 
this model is related to operating point of synchronous generator(s), 
many efforts have been made in research papers to design robust and 
reliable controllers to ensure the stability of the system. A typical 
mono-machine power system is presented in this paper to make a 
comparison between behaviors of traditional power system stabilizer 
and LQR based pss. Characteristics and fundamental concepts of 
each controller are stated. At the termination of the paper, Sliding 
Mode method has been engaged so that the power system can be 
stable in uncertain condition. The results of LQR base and sliding 
mode based PSSs have been compared under uncertainty. 
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I. INTRODUCTION 
Connecting small generation and distribution systems 

together makes better stability against small disturbances but 
when a serious problem occurred for one of the connected 
systems, it also affects the others. These connections have 
been done between even different countries for economic 
reasons. Modern power systems have many characteristics 
such as far distances of consumption from generation 
declining the power system stability. In order to provide 
stability for such modern systems, different control systems 
have been designed and applied in power plants and power 
transmission lines. Drum level control, Governor, and 
Automatic Voltage Regulator are such control systems which 
are applied in power plants. Governor and AVR have bound 
capability to damp transient state oscillations. Therefore 
another control system called power system stabilizer, pss, is 
applied to improve the stability. This additional loop can be 
applied for both governor and AVR control loops. Applying 
pss to governor makes many quick variations in the position of 
mechanical fuel gate making it injured. Hence it is 
recommended to apply pss to AVR controller [1]. 

Static Var Compensator, SVC, synchronous condenser, tap 
changer, and FACTS devices are control systems in power 
transmission lines. 

To simulate and control a generator, it is important to have 
a model. State space model is a well-known for this aim. The 
complete model for a synchronous machine has 7 orders. It is 
efficient to reduce the degree of the system as well as 
linearization in order to simplify the model. Heffron-Philips 

model is such a linear model with 3 orders. This model is 
considered to apply controllers in this paper. 

II. CASE STUDY 

Figure 1. The power system anticipated as case study 
 

Figure (1) indicates a power system as our case study. It 
includes a power plant comprising four same units. The power 
plant is connected to a transmission line by a transformer. The 
line conveys the power to an infinitive bus. 

Electrical parameters presented on table (1) are pertaining 
to normal regime operation of the system [1]. The values are 
in per unit system. 

 
Table 1. Initial values for the power system 

Generator constants H=3.5, D=0.5, T'do=8.0 
Xd=1.81, Xq=1.76, X'd=0.3 

Exciter constants KA=10 

Line and transformer 
constants 

XL1=0.5, XL2=0.93, 
XT=0.15 

Electrical parameters P=0.9, Q=0.3, Vt=1.0<36o

VB=0.995<0o

III. HEFFRON-PHILIPS MODEL 
Heffron-Philips model for generator is linear model with 3 

degrees in state space. Figure (2) shows this model with AVR 
loop. 

The state space matrices corresponding to the presented 
model in Figure (2) can be formulated as equation (1). 

Where [x1 x2 x3] = [ω δ e'q] and [u1 u2] =[TM uE]. 
It is easy to calculate all the parameters of equation (1) by 

using table (1). 
 



Figure 2. Heffron-Philips model with the AVR controller 
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IV. PSS CONTROL LOOP 
Suppose a condition in which the second transmission line 

is removed under a fault [1]. The aim is to study rotor's speed 
oscillations and apply a pss to improve the stability resulting 
in decrement of speed deviations around the steady state 
value. Steady state values in such a condition can be 
calculated as equation (2). 
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Using these values, coefficients k1 through k6 have below 
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Input signal of pss is speed of rotor and the output is a 
bounded voltage adding to the generator excitation. A block 
diagram for a regular pss is indicated in figure (3). 

Figure 3. Block diagram of a regular pss 

The response of speed deviations of the rotor after 
removing the second line with and without pss loop is shown 
in figure (4). 

Figure 4. Speed deviations of rotor with and without presence of 
pss after the fault 

Moreover, responses of power angle and deviations of 
terminal voltage of generator with and without pss can be seen 
in figure (5) and figure (6) respectively. 

Figure 5. Power angle without and with presence of pss after the 
fault 

 

Figure 6. Terminal voltage of the generator with and without 
presence of pss after the fault 



It is proved from figures (4), (5), and (6) that pss has been 
able to improve stability of the system actually by shifting the 
eigen values of the matrix A of state space equations to the left 
areas of s-plane. Since stability concept for a generator and 
related equipments is angular stability of a power system, you 
can say that pss extends the angular stability limits of a power 
system. However, pss can exacerbate instabilities of a power 
system. It is reasonable because pss is designed to operate 
around an operating point so it can improve the stability under 
small disturbances. However, when a large fault occurred, pss 
can lose synchronism of the generator by providing surplus 
excitation field. In addition, you may think of tuning a pss to 
extend more the angular stability but there is indeed a 
limitation to tune the parameters of pss since its output voltage 
reaches to saturation levels determined by the actual 
limitations. If the parameters of pss were selected in a way to 
have small amplitudes in state variables, the output voltage of 
pss becomes larger. On the other hand if they were designed in 
order to have small output voltage of pss, the amplitudes of 
state variables become larger. Therefore a compromise should 
be employed. 

V. LQR BASED STATE FEEDBACK 
Closed loop poles of a linear control system can be 

emplaced in desired places of s-plane using state feedback and 
observer control system design. Also its poles can be chosen 
by choosing appropriate observer gain. Response speed and 
estimation error dynamics can be defined by choosing closed 
loop poles. However, optimal selection of closed loop poles is 
really hard for industrial systems and real processes. Albeit an 
unstable system can be stabilized by applying states 
feedbacks, but linear optimal control systems should be 
engaged for below reasons. 

The first reason is that it is hard to find appropriate closed 
loop poles in which the desired behavior of the system is 
satisfied. Selecting closed loop pole with great negative real 
parts makes the dynamic response of the system to be quick 
while the control effort to be greater than permissible levels. If 
selection of the closed loop poles makes saturation of control 
signals, dynamic behavior of the system will not be as same as 
the desired behavior even it may become unstable. 

The second reason is noise which specially occurs in the 
systems with high gains. 

Therefore optimal selection of closed loop poles will lead 
to a trade-off between speed of dynamic response and control 
effort. 

Suppose the linear system in state space given by equation 
(4). 
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The purpose is to stabilize the system so that all the state 
variables become zero by any initial value in maximum speed. 
There are many criteria to do that. Quadratic integral equation 
is a well-known such a criterion [2]. 
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Where Q is a non-negative definite matrix which is called 
weighting matrix. On the other hand, R is a positive definite 
weighting matrix. Selection of values of these matrixes 
determines the dynamic speed of the controller as well as 
amplitudes of state variables and control signals. For example 
if R is selected small while Q is selected large, more stability 
will be attained with large control efforts. 

Solving an optimal control problem means finding a u(t) 
by which equation (5) is minimized. Linear Quadratic 
Regulator, LQR, can solve this problem [2] (see equation (6)). 
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After calculating X from algebraic equation (6), k and u can 
be calculated from equations (7). 
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Indeed, LQR is an optimal pole assignment and integral J 
defines circumstance of assigning closed loop poles as an 
optimizing criterion. 

 For our case study R and Q matrixes have been selected as 
equations (8). 

It has been tried to have small control effort and equal 
importance to the state variables. It is important to note that 
there will be guarantied gain and phase margins by LQR. In 
fact it is not required to verify stability of the system after 
designing state feedback by LQR because it must be stable. 
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VI. OBSERVER DESIGN 
If A and C matrixes were observable in equation (4), then 

the observer can be designed as equation (9) [3]. 

)9()ˆ(ˆˆ yxCLBuxAx −++=
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Where x̂ denotes estimations of states x. xxx −= ˆ is 
estimation error and it should reach to zero. x can satisfy 
equation (10). 
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Behavior of estimation error is related on the eigen values of 
matrix A+LC. For the mentioned case study L has been 
selected in a way to have -2, -5, and -11 as eigen values of 
A+LC (equation (11)). 

L= [1696   -17.2   -2039.9]                                             (11) 

VII. LQR BASED POWER SYSTEM STABILIZER 
The designed observer estimates all the three state 

variables. Then the estimated states are fed to the inputs by k 
which is designed using LQR. 

Simulation results prove that state variables have 
significantly smaller amplitudes than those of pss while 
having small control signals too. Figure (7) indicates the speed 
deviations while figure (8) and figure (9) indicate the control 
signals. It can be found from figure (7) that LQR based pss has 
significant stabilizing characteristics in comparison with the 



traditional pss. Also figure (8) and figure (9) prove that control 
signals are much less in LQR based pss than the traditional 
one. 

Figure 7. Comparison of speed deviation in LQR based pss and 
regular pss 

Figure 8. First control signal comparison between the two 
controllers 

 

Figure 9. Second control signal comparison between the two 
controllers 

Figure 10. speed deviations of both controller after the heavy 
fault 

 

Figure 11. First control signal of the LQR base controller after 
the heavy fault 

 

Figure 12. Second control signal of the LQR base controller after 
the heavy fault 

Another simulation has been made to ensure that the LQR 
based pss has a good reliability. It has been supposed that a 
three phase short circuit at the received end of the second line 
has been occurred without removing the line. Figure (10) 
indicates speed variations of both controllers at the same 
condition. LQR based controller is still stable while traditional 



pss is unable to stabilize the power system. This result proves 
the extent gain and phase margins of the LQR solution. Figure 
(11) and figure (12) indicate that the LQR based controller is 
subjected to have greater control effort to remain stable. 

VIII. SLIDING MODE BASED POWER SYSTEM STABILIZER 
Reference [4] has proposed sliding mode to design a 

controller in order to have robust state covariance assignment. 
This method is briefly illustrated and is employed to have a 
robust controller for the stability problem of this paper. 

The main aim of this controller is to reach the answer 
paths, trajectories, to a surface. Then the state variables should 
be tended to asymptotic stability through this surface. To 
achieve this aim the surface should be made attractive so that 
it can attract the paths. Hence the controller should be 
designed to tend the paths to the surface. The controller should 
have switching ability to keep the path by which the state 
variables have been reached to the desired surface. Different 
surfaces and control rules can be determined regarding the 
system model and control desires. This paper has engaged the 
proposed method in [4] to determine the plane.  

Let plane S to be as (11). 
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Where 1
1 )](...)(...)([)( ×ℜ∈= mT

mi tStStStS , C and G 
are constant matrices to be design, C is chosen such that CB is 
nonsingular, and G is the control feedback gain matrix which 
should be determined so that the state variables can fit the 
requirement in the sliding mode [4]. Equation (12) is attained 
by derivative of (11). 
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Note that CD=0. In the sliding mode the states 

satisfy 0=
•

S , then we get the equivalent control as follows 
ueq (t) =Gx(t). Equation (13) can be attained for dynamic 
sliding mode by replacing this input into system equation. 
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If u(t) is anticipated as (14) in which Ak ∆> , α is a 
positive constant, 

T
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second norm of x, then the state of the system will converge  
to the sliding mode surface s(t)=0 with probability. We have 

chosen   1,
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= αC and k=1 so that CD=0 and CB is 

nonsingular. Eventually G is selected so that the eigen values 
of A+BG are {-3, -6± 5i}. 

Let compare responses of certain models of LQR and 
sliding mode. Figure (13) represents the response of LQR 
based pss and Figure (14) is the response of sliding mode 
controller. It is proved from these figures that both controllers 
provide good stability condition for the power system however 
the amplitude of speed deviations in sliding mode is less than 
that of LQR controller. 

Figures (15), and (16) present the speed deviations in LQR 
and sliding mode methods respectively under uncertain model. 
These results prove that the sliding mode controller is robust 
since even under uncertain model it has been successful to 
tend the state variables to the surface S. Moreover, Figures 
(17), and (18) denote the first and second control efforts of 
both controller. 

Figure 13. Speed deviations response of LGR based pss in certain 
model 

Figure 14. Speed deviations response of sliding mode based pss 
in certain model 

Figure 15. Speed deviations response of LQR based pss in 
uncertain model 



Figure 16. Speed deviations response of sliding mode based pss 
in uncertain model 

Figure 17. First and second control signals of LQR based pss in 
uncertain model 

Figure 18. First and second control signals of sliding mode based 
pss in uncertain model 

IX. CONCLUSION 
Fundamental theory of regular pss, LQR based state 

feedback, observer, LQR based pss, and eventually sliding 
mode based pss were presented in the paper. Simulation 
results for a case study including regular pss and LQR based 
one were presented separately after removing a transmission 
line from service. LQR based pss yielded better stabilizing 
parameters while smaller control efforts than the regular pss. 
Moreover, after applying a heavy fault the regular pss got 

unstable while the LQR based pss was able to stabilize the 
power system although the control efforts were increased 
significantly. This phenomenon can prove the extent gain and 
phase margins of LQR based state feedback. Therefore a 
designer can apply LQR to design a power system stabilizer 
with good gain and phase margins without any worry about 
control signals since LQR can compromise between values of 
state variables and control efforts. At the last section, slide 
mode controller, which supposes to be robust, applied to the 
power system to pole placement. In certain model the results 
of both LQR and sliding mode were stable and acceptable 
taking it into consideration that the state variables have 
smaller magnitudes in the case of sliding mode controller. 
Under uncertainty, it was found that LQR controller which is 
not a robust controller became unstable while sliding mode 
controller was able to remain stable proving its robustness.  
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